Productivity Improvement through Line Balancing in Apparel Industries

Md. Rezaul Hasan Shumon, Kazi Arif-Uz-Zaman and Azizur Rahman
Dept. of Industrial Engineering and Management
Khulna University of Engineering and Technology
Khulna, Bangladesh

Abstract

The apparel industries must produce momentous quantities in shorter lead times. Apparel product is highly correlated with high level of productivity; sewing line should be balanced in shorter possible time and effective way for each style and quantity. The focal constraint against the higher productivity is the difference in individual capacity which is the mode of improper line balancing and bottle neck process. This paper is based on an effective layout model where to hit upon the bottleneck process through benchmark capacity and led us to use balancing process using two separate concept of manufacturing processes- modular line and Traditional system both together. The research shows that this balanced layout model has increased the efficiency by 21%, and labor productivity by 22%.

Keywords

Scheduling, Line Balancing, Bundle system, Modular Line.

1. Introduction

Since the late 1970s, the RMG industry started developing in Bangladesh primarily as an export-oriented industry and the domestic market for RMG has been increasing fast due to increase in personal disposable income and change in life style. The sector rapidly attained high importance in terms of employment, foreign exchange earnings and its contribution to GDP. Since buyer comes to this region for the lowest labor price ($\$ 0.11$ per shirt for Bangladesh, $\$ 0.26$ for India, $\$ 0.79$ for Srilanka [3]), the quality of the garments, efficiency and productivity of Bangladesh RMG sector remain ignored even in the tough competitive market. Factories in Sri Lanka operate at $80 \%-90 \%$ of efficiency, whereas in Bangladesh, according to some experts, productivity is between 35% and 55% of efficiency with very few exceptions [3]. For the RMG sector in Bangladesh, productivity alone can make a difference between life and death.

3. Methodology

We discussed the paper comparing the productivity and efficiency before and after applying the balancing technique. Considering experience, capacity, one production line is selected from the sewing floor. One garment order is chosen which was started in that line, knowing total amount of order, style description, fabric type and color. Two important attributes have been considered, one is possible standard method for each process and another is considerable time in between the input has been fed to the time study took to record the actual individual capacity of each worker. We have recorded the time to make each process for each and every worker to find out the number of operator and helper, type of machines, basic and standard pitch time and individual capacity. To find out the (standard allowable minute) S.A.M value, process wise capacity has been calculated, in addition to that we have calculated the target, benchmark capacity, theoretical manpower, actual capacity line graph, labor productivity and line efficiency. Line has been balanced considering the bottleneck and balancing process where the balancing process has shared the excess time after the benchmark production in the bottleneck process. After balancing, new manpower has been proposed and final capacity of each worker has been reallocated. We have compared the line graph after balancing the line, labor productivity and line efficiency. Finally a proposed production layout has been modeled with balanced capacity.

4. Equations

4.1 Standard Pitch Time $($ S.P.T $)=$ Basic Pitch Time $($ B.P.T $)+$ Allowances $(\%)$
4.2 Target $=\frac{\text { Total Manpower per line *Total Working Minutes per Day }}{\text { S.A.M }} * 100 \%$
4.3 Theoretical Manpower $=\frac{\text { Benchmark Target per hour }}{\text { Process Capacity per hour }}$
4.4 Labor Productivity $=\frac{\text { Total number of output per day per line }}{\text { Number of worker worked }}$
4.5 Machine Productivity $=\frac{\text { Total number of output per day per line }}{\text { Number of machines used }}$
4.6 Line Efficiency: $\frac{\text { Total Manpower per line *Total Working Minutes per Day }}{\text { Total }} * 100 \%$

5. Data Analysis and Calculations

5.1 Before balancing the line

In Annexure 1: time study sheet is attached showing the different types of machine used, number of operators and helpers, basic and standard pitch time and capacity per hour.

Table 1: Bench mark Target, Labor and machine productivity and Line Efficiency before balancing line.

Total Output Per Day	1200		
Total Manpower =	37		
Working Time =	600		
S.A.M =	8.90		
Target /Hour =	250 100\% Efficiency		
Target /Hour =	200	80\% Efficiency	Bench Mark
=	150	60\% Efficiency	
$=$	100	40\% Efficiency	
Labor Productivity =		32	
Machine Productivity		55	
Line Efficiency \% =		48	

Process wise capacity of each work station has been shown in Annexure 2 where Standard allowable minutes (S.A.M) has been calculated by adding S.P.T of each process. Table: 1 shows the target per hour for the line calculating total 37 manpower worked on that line for 600 minutes with a S.A.M value of 8.90 . We have standardized the Bench mark target of 200 pieces of garment at 80% efficiency. Observation before balancing the line has been reflected as labor and machine productivity is 32 and 55 , line efficiency is 48%.where the total production has been attached in Annexure 4.

Figure 1: Variation in each process capacity per hour compare to bench mark target per hour

Plotting process wise capacity in a line graph shows the variation of each process from the bench mark target as the upper capacity is 490 pieces per hour where the lower capacity is only 115 pieces per hour compare to the bench mark target of 200 pieces. This shows the imbalance situation in the line and bottleneck condition through out the process of the whole garment making as lots of WIP stations in the line.

Table 2: Balancing Processes to equalize the bottleneck process

Balancing Capacity Per Hour								
SI No.		Bottleneck Process				Balancing Process		
	Process Name	Process No.	Capacity /Hour	Balanced Capacity	Process Name	Process No.	Capacity /Hour	Balanced Capacity
1	Make \& Join Care Label	6	178	208	Neck Rib Make Width	7	261	217
	Remarks :	Process \# 7 can work for 50 min . and share work with process \# 6 for last 10 min .						
2	Back Neck Elastic Tape Joint	12	153	216	Back Neck Elastic Top	13.8	327	258
	Remarks :	Process \# 13.B can work for 35 min . and share work with process \# 12 for last 25 min .						
3	Match Slv Pair \& Sleeve \& body	16	167	195	Main Label position Mark	14	242	201
	Remarks :	Process \# 14 can work for 50 min . and share work with process \# 16 for last 10 min .						
4	Sleeve Hem	23	175	198	Bottom Hem	25	231	200
	Remarks :	Process \# 25 can work for 52 min . and share work with process \# 23 for last 8 min .						
5	Churi Hem Raw edge Cut	24	115	153	Body Folding after Side seam	20	300	200
	Remarks :	Process \# 20 can work for 40 min . and share work with process \# 24 for last 20 min .						
		Process \# 24 can improve the method or use floater to balance the processs.						
6	Security Tack	27	184	199	Sleeve Hem Tack	22	223	204
	Remarks :	Process \# 22 can work for 55 min . and share work with process \# 27 for last 5 min .						

5.3 Bottleneck processes

From Figure 1: we have identified some variations in process capacity from the bench mark target and the lower capacity from the bench mark target is the bottleneck process as production flow would stuck on the bottleneck point. Comparing total capacity of each process to the 80% bench mark target, we have identified the bottleneck processes named make and join care label, back neck elastic tape joint, match sleeve pair and sleeve and body, sleeve hem, churi hem raw edge cut, security tack and thread cut body turn in Annexure 3: marked with light brown color. Total production has been blocked in these seven work stations and large work in process (WIP) has been stuck in these bottleneck processes.

5.4 Balancing Processes

Balancing method is very essential to make the production flow almost smoother compare to the previous layout. Considering working distance, type of machines and efficiency, workers who have extra time to work after completing their works, have been shared their work to complete the bottleneck processes. Previously identified seven bottleneck processes have been plotted in the left side of the Table 2. Make and join care label and Back neck elastic tape joint both have been made by lock stitch machine and these have been shared by two lock stitch machine processes. Operator who work in Process no. 7 Neck rib make width, have been worked for 50 minutes per hour in her first process, capacity 217 pieces and then have been worked in the process no. 6 make and join care label for last 10 minutes to make additional 30 pieces for overall capacity of 208 pieces on process no. 6. Similarly Process
no. 13.B back neck elastic top have been worked for 35 minutes and rest 25 minutes have been worked on process no. 12 to make total capacity of 216 pieces which was originally 153 pieces shown in Table 2. Process no.14, 25, 20 and 22 have been similarly worked on the process no.16, 23, 24 and 27 for the capacity of 195, 198, 153 and 199 pieces per hour. Process no. 24 churi hem raw edge cut have been suggested an extra floater to use after being shared worked from process no. 20.

5.5 Proposed Layout

Figure 2: Proposed Layout Model to balance the bottleneck processes
Research has been customary through this model which indicates that the processes are almost balanced from previous layout through the combination of balancing and bottleneck processes. The blue arrow on the centre table indicates the production flow through the process no. as semi zigzag combination and green arrow shows the sharing of works in between balancing and bottleneck processes. First column on both side of center table shows the
machine type and then followed by process no. process name, S.A.M value, previous capacity and after balance capacity. After first process front and back match, bundle of garments have been come to process no. 2 shoulder joint, then the bundle have been passed diagonally to process no. 4 shoulder top and in between the processes, one helper has been worked in process no. 3 shoulder cut mark which is shown in fig 1 . The working bundle then has been passed to process no. 6 and so on. From process no. 6 to 7 and process no. 23 to 25, work has been flowed vertically not diagonally because of balancing out the bottleneck processes of no. 6 and 23 as diagonal flow would have create the long distance and much time to balance. For balancing 6 possible stations, we have used the short possible distance; similar machines (process 6, 7, 12, 13.B, 22, 27 have been utilized in lock stitch machines, process 23 and 25 have been utilized in flat lock machines and process 14 and 16 are service operators.

6. Result and Findings

Changing from traditional layout to balanced layout model, there are considerable improvements have moved toward us. Among the three operators who were replaced to another line, have been used in the lock stitch and flat lock machines and machine productivity for these less used machines has been increased from 55 to 66 where for the total worker of 32 instead of 37 , labor productivity has been increased to 39 from 32 .

Table 3: Bench mark Target, Labor and machine productivity and Line Efficiency after line balancing.

Total Output Per Day	1250		
Total Manpower =	32	Minutes	
Working Time =	600		
S.A.M =	8.90		
Target /Hour =	216	100\% Efficiency	
Target /Hour =	173	80\% Efficiency	New Bench Mark
=	129 60\% Efficiency		
$=$	86	40\% Efficiency	
Labor Productivity =	39		
Machine Productivity	66		
Line Efficiency \% =	58		

In a day we have boost up the production up to 1250 and with manpower of 32 , line efficiency has been improved from 48% to 58% which is shown in Table 3. In an improved layout, target has been decreased at each efficiency level. At 80% efficiency, target is now 173 pieces per hour which has been considered as new bench mark target.

Figure 3: Variation in each process capacity per hour compare to bench mark target per hour
After balancing the process flow, figure- 3: shows the less variation of each process from the bench mark target as the upper capacity is 260 (previous one was 490) pieces per hour where the lower capacity is only 153 (previous one was 115) pieces per hour compare to the bench mark target of 200 pieces which shows that the variation in each
process has been decreased from the previous one and reflects much better balanced production flow in the line. For Process no. 24 churi hem raw edge cut, an extra floater has been suggested to utilize.

8. Recommendations for Future Research

Result would have been more effective if we would have taken some large quantity order and balancing the process is highly related to the type of machines as machine utilized in bottleneck and balancing process should be similar.

Further improvements in the productivity can be achieved by considering large amount of order minimum 10000 pieces. Table 2 shows the new bench mark target which can be the further chance of improvements to balance the line with this new bench mark target. Proposed layout model has been followed the logic of modular system (one worker works more than two processes who is skilled on all processes and these combination of skilled workers finish their work in piece flow production) and traditional system (one worker works in one process and all the workers who may be skilled or not finish their work in bundle flow production) both together where only modular production system can be applicable with a series of skilled workers to achieve more productivity. On this occasion, skilled workers are eligible for the production processes and proper training and supervision is essential to achieve the optimum improvements on productivity and efficiency.

9. Conclusion

Maximum outputs have been increased to 1272 pieces a day which was previously recorded to 1192 pieces a day. Before balancing the line 4791 pieces of garments have been produced for 5 days where 4522 pieces have been produced for 4 days after balancing the line. We have saved one day lead time for that style of 9000 pieces and almost 600 minutes of labor work value time. We have replaced 3 operators and 2 helpers into different lines and relatively saved 5 workers work time of 3000 minutes from that line and almost $\$ 130$ (Tk1441 BDT for helper and Tk2000 BDT for operator on an average) [4] .

References

1. file://localhost/BANGLAPEDIA_\%20Garment\%20Industry.htm
2. "Quality and Productivity Management in perspective to Global Economic Situation", organized by BGMEA's Chittagong unit as part of CAFAXPO-2009.
3. Labor Management in Development Journal, 2001, Vol. 2 Number 7P.5.
4. World Bank development research group, June2000.

Annexure 1: Time study sheet showing total operator and helper with standard pith time and capacity.

$\ldots \ldots$. Designers Limited			
Time Study Sheet			
Shipment Quantity : 9000 Pcs	Colour : Deep Green	Style : Round Neck Tee Shirt	Date :11/04/09

SL. No	Name	Process	Operator	Helper	Machine	B.P.T	Allowances\%	S.P.T	Capacity/ Hour
1	Soheli	Front Back Matching		1	HP	0.374	20\%	0.449	134
2	Akram	Front Back Matching		1	HP	0.436	20\%	0.523	115
3	Russel	Shoulder Joint	1		O/L-4	0.273	15\%	0.314	191
4	Aleya	Shoulder cut mark		1	HP	0.205	20\%	0.246	244
5	Nazrul	Shoulder Top	1		C/S-1	0.238	20\%	0.285	211
6	Nusrat	Thread cut		1	HP	0.228	20\%	0.274	219
7	Alim	Make Care Label	1		L/S-1	0.128	20\%	0.154	390
8	Rokeya	Join Care Label	1		L/S-1	0.153	20\%	0.183	328
9	Hasna	Neck Rib Make Width	1		L/S-1	0.192	20\%	0.230	261
10	Taniya	Neck Rib Fold Tack	1		L/S-1	0.222	20\%	0.266	226
11	Selim	Neck Joint	1		O/L-4	0.250	15\%	0.288	208
12	Mohona	Thread cut		1	HP	0.228	20\%	0.274	219
13	Selina	Cut Twill Tape		1	HP	0.193	20\%	0.231	260
14	Amena	Back Neck Elastic Tape Joint	1		L/S-1	0.326	20\%	0.391	153
15	Yousuf	Back Neck Elastic Top	1		L/S-1	0.301	20\%	0.361	166
16	Ariful	Back Neck Elastic Top	1		L/S-1	0.310	20\%	0.372	161
17	Hasna hena	Back Neck Elastic Top	1		L/S-1	0.308	20\%	0.369	163
18	Ratna	Main Label position Mark		1	HP	0.207	20\%	0.248	242
19	Mohsin	Main and Co Label joint	1		L/S-1	0.214	20\%	0.257	233
20	Sifat	Match Sleeve Pair		1	HP	0.141	20\%	0.169	355
21	Sanjida	Match Sleeve and Body		1	HP	0.158	20\%	0.190	316
22	Ali hossain	Sleeve Joint	1		O/L-4	0.410	15\%	0.472	127
23	Ataur	Sleeve Joint	1		O/L-4	0.418	15\%	0.481	125
24	Moyna	Body Turn		1	HP	0.242	20\%	0.29	207
25	Mahfuja	Side Seam	1		O/L-4	0.417	15\%	0.479	125
26	Motaher	Side Seam	1		O/L-4	0.410	15\%	0.472	127
27	Lima	Body Folding after Side seam		1	HP	0.167	20\%	0.200	300
28	Lotifa	Bottom Hem Tack	1		L/S-1	0.226	20\%	0.271	221
29	Nisha	Sleeve Hem Tack	1		L/S-1	0.224	20\%	0.269	223
30	Noyon	Sleeve Hem	1		F/L-3	0.294	17\%	0.344	174
31	Majhharul	Sleeve Hem	1		F/L-3	0.291	17\%	0.341	176
32	Rina	Churi Hem Raw edge Cut		1	HP	0.463	20\%	0.555	108
33	Jhuma	Churi Hem Raw edge Cut		1	HP	0.410	20\%	0.492	122
34	Humayun	Bottom Hem	1		F/L-3	0.222	17\%	0.260	231
35	Rashida	Bottom Hem Raw edge Cut		1	HP	0.238	20\%	0.285	211
36	Majhhar	Security Tack	1		L/S-1	0.272	20\%	0.326	184
37	Trina	Thread cut Body Turn		1	HP	0.276	20\%	0.331	181

Total	22	15
Total Manpower 37		

Annexure 2: Process wise capacity per hour showing S.A.M value, and theoretical manpower.

.......................Designers Limited
Process Wise Capacity Per Hour

SL. No	Process	S.A.M	Capacity / Hour	Target @80\%	Theoretical Manpower	Actual Manpower
1	Front Back Matching (2 Person)	0.483	248	200	0.8	2
2	Shoulder Joint	0.314	191	200	1.0	1
3	Shoulder cut mark	0.246	244	200	0.8	1
4	Shoulder Top	0.285	211	200	1.0	1
5	Thread cut	0.274	219	200	0.9	1
6	Make Care Label	0.154	390	200	0.5	1
7	Join Care Label	0.183	328	200	0.6	1
8	Neck Rib Make Width	0.230	261	200	0.8	1
9	Neck Rib Fold Tack	0.266	226	200	0.9	1
10	Neck Joint	0.288	208	200	1.0	1
11	Thread cut	0.274	219	200	0.9	1
12	Cut Twill Tape	0.231	260	200	0.8	1
13	Back Neck Elastic Tape Joint	0.391	153	200	1.3	1
14	Back Neck Elastic Top (3 Person)	0.367	490	200	0.4	3
15	Main Label position Mark	0.248	242	200	0.8	1
16	Main and Co Label joint	0.257	233	200	0.9	1
17	Match Sleeve Pair	0.169	355	200	0.6	1
18	Match Sleeve and Body	0.190	316	200	0.6	1
19	Sleeve Joint (2 Person)	0.476	252	200	0.8	2
20	Body Turn	0.290	207	200	1.0	1
21	Side Seam (2 Person)	0.475	252	200	0.8	2
22	Body Folding after Side seam	0.200	300	200	0.7	1
23	Bottom Hem Tack	0.270	222	200	0.9	1
24	Sleeve Hem Tack	0.269	223	200	0.9	1
25	Sleeve Hem (2 Person)	0.342	350	200	0.6	2
26	Churi Hem Raw edge Cut (2 person)	0.522	115	200	1.7	2
27	Bottom Hem	0.260	231	200	0.9	1
28	Bttm Hem R edg Cut (2 Person)	0.285	421	200	0.5	2
29	Security Tack	0.326	184	200	1.1	1
30	Thread cut Body Turn	0.331	181	200	1.1	1

S.A.M	8.90

Annexure 3: Proposed capacity per hour for each process showing proposed manpower and bottleneck processes.

...... Designers Limited
Proposed Capacity Per Hour

SL. No	Process	S.A.M	Total Capacity	Target @80\%	Theoretical Manpower	Actual Manpower	Proposed Manpower
1	Front Back Matching (2 Person)	0.483	248	200	0.8	2	2
2	Shoulder Joint	0.314	191	200	1.0	1	1
3	Shoulder cut mark	0.246	244	200	0.8	1	1
4	Shoulder Top	0.285	211	200	1.0	1	1
5	Thread cut	0.274	219	200	0.9	1	1
6	Make \& Join Care Label	0.337	178	200	1.1	2	1
7	Neck Rib Make Width	0.230	261	200	0.8	1	1
8	Neck Rib Fold Tack	0.266	226	200	0.9	1	1
9	Neck Joint	0.288	208	200	1.0	1	1
10	Thread cut	0.274	219	200	0.9	1	1
11	Cut Twill Tape	0.231	260	200	0.8	1	1
12	Back Neck Elastic Tape Joint	0.391	153	200	1.3	1	1
13	Back Neck Elastic Top (2 Person)	0.367	327	200	0.6	3	2
14	Main Label position Mark	0.248	242	200	0.8	1	1
15	Main and Co Label joint	0.257	233	200	0.9	1	1
16	Match Slv Pair \& Sleeve \& body	0.359	167	200	1.2	1	1
17	Sleeve Joint (2 Person)	0.476	252	200	0.8	2	2
18	Body Turn	0.290	207	200	1.0	1	1
19	Side Seam (2 Person)	0.475	252	200	0.8	2	2
20	Body Folding after Side seam	0.200	300	200	0.7	1	1
21	Bottom Hem Tack	0.270	222	200	0.9	1	1
22	Sleeve Hem Tack	0.269	223	200	0.9	1	1
23	Sleeve Hem	0.342	175	200	1.1	2	1
24	Churi Hem Raw edge Cut	0.522	115	200	1.7	2	1
25	Bottom Hem	0.260	231	200	0.9	1	1
26	Bottom Hem Raw edge Cut	0.285	211	200	1.0	2	1
27	Security Tack	0.326	184	200	1.1	1	1
28	Thread cut Body Turn	0.331	181	200	1.1	1	1

Total	37	32

Annexure 4: Total production status for the style 810105 showing production start date, complete date and date of balance the line.
.................Designers Limited
Production Status (Style No : 810105)
Style : Round Neck Tee Shirt Color : Deep Green Order Quantity: 9000 Pcs

Date/ 09	Manpower			Production	Remarks
	Operator	Helper	Total		
	22	15	37		
6-Apr	22	15	37	632	
7-Apr	22	15	37	856	
8-Apr	22	15	37	1011	
9-Apr	22	15	37	1100	
11-Apr	22	15	37	1192	
12-Apr	19	13	32	900	Line Balanced
13-Apr	19	13	32	1090	
15-Apr	19	13	32	1260	
16-Apr	19	13	32	1272	Order Completed

Total	9313	

